Fejer-Korovkin Wavelet Based MIMO Model For Multi-step-ahead Forecasting of Monthly Fishes Catches

نویسندگان

  • Nibaldo Rodriguez
  • Lida Barba
چکیده

This paper proposes a Multiples Input-Multiples Ouput Autoregressive (MIMO-AR) model based on two stages to improve monthly anchovy catches forecasting of the coastal zone of Chile for periods from January 1958 to December 2011. In the first stage, the stationary wavelet transform (SWT) based on Fejer-Korovkin (FK) wavelet filter is used to separate the raw time series into a high frequency (HF) component and a low frequency (LF) component. In the second stage, both the HF and LF components are the inputs into a FK+MIMO-AR model to predict the original time series. The performance of the FK-MIMO-AR model is evaluated by comparing its prediction with MIMO-AR model based on SWT with Daubechies (Db) wavelet filter (Db+MIMO-AR). Results show that the FK+MIMO-AR model outperforms the Db+MIMO-AR model in terms of root mean square error, modified Nash-Sutcliffe efficiency and coefficient of determination for 15-month-ahead anchovy catches forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-variate Wavelet Autoregressive Model for Multi-step-ahead Forecasting of Fish Catches

This paper proposes a hybrid multi-step-ahead forecasting model based on two stages to improve monthly pelagic fish-catch time-series modeling. In the first stage, the stationary wavelet transform is used to separate the raw time series into a high frequency (HF) component and a low frequency (LF) component, whereas the periodicities of each time series is obtained by using the Fourier power sp...

متن کامل

Haar Wavelet Neural Network for Multi-step-ahead Anchovy Catches Forecasting

This paper proposes a hybrid multi-step-ahead forecasting model based on two stages to improve pelagic fish-catch time-series modeling. In the first stage, the Fourier power spectrum is used to analyze variations within a time series at multiple periodicities, while the stationary wavelet transform is used to extract a high frequency (HF) component of annual periodicity and a low frequency (LF)...

متن کامل

Multiscale RBF Neural Network for Forecasting of Monthly Hake Catches off Southern Chile

We present a forecasting strategy based on stationary wavelet transform combined with radial basis function (RBF) neural network to improve the accuracy of 3-month-ahead hake catches forecasting of the fisheries industry in the central southern Chile. The general idea of the proposed forecasting model is to decompose the raw data set into an annual cycle component and an inter-annual component ...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016